
Journal of Engineering Mathematics, Vol. 3, No. 1, January 1969 
Wolters-Noordhoff Publishing - Groningen 
Printed in the Netherlands 

On the Optimum One-Bladed Cycloidal Ship Propeller 

J.A. S P A R E N B E R G  A N D  R. D E G R A A F  

Dept. of Mathematics, University of Groninoen, Groningen, the Netherlands 

(Received August 7, 1968) 

S U M M A R Y  
The optimal motion of a one-bladed cycloidal propeller is investigated by minimizing the kinetic energy, left behind in 
the wake. The propeller blade is assumed to perform a, fish tail like, trochoidal motion and to provide a prescribed 
thrust. The theory is two-dimensional. The efficiency of the propeller is calculated and its quality is discussed. 

1. Introduction 

The propeller, we will discuss here, can be considered to belong to the class of the cycloidal 
prot3ellers [-5]. We first give a schematic description of its special properties. 

The propeller possesses an axis of rotation, perpendicular to the bottom of the ship (Fig. 1,1). 
At the lower end of this axis and parallel to the bottom we can imagine a circular dis c, to 
which the propeller blades are attached. These blades are perpendicular to the disc and during 
the rotation of the disc they perform an oscillatory motion around short shafts. The points, 
where these shafts meet the disc, are denoted by T'. The angular velocity co of the disc is 
constant. 

We will determine the oscillatory motion of the blades in such a way that, under a certain 
constraint which will be discussed later on, the efficiency of the propeller is as high as possible. 
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Figure 1.1. Scheme of a ship with a cycloidal propeller. 

In the ordinary case the rotational velocity coR of the propeller blades, where R denotes the 
distance from the turning points T' to the axis of the propeller, is large with respect to the trans- 
lation velocity U of the ship. Fig. 1.2 shows the self-intersecting orbits of the blades in a cross 
section, parallel to the surface of the fluid. Here we consider, however, the case, that the rota- 
tional velocity is sufficiently small. Then the blades move like a fish tail (Fig. 1.3). 

Besides this we assume, that the propeller is provided with only one blade (Fig. 1.3). We 
notice, that the presence of more blades will of course influence the optimal oscillatory motion 
of the blades. Hence more complicated calculations will be needed in the future. 

The propeller is placed in water, here considered as an incompressible and inviscid fluid. 
We assume, the blade is infinitely long. Hence we ignore tip effects. Besides we suppose, the 
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2 J.A. Sparenberg, R. de Graaf 

blad e is infinitely thin and has no twist, while the chord length at every height will be the same. 
Therefore we have a two-dimensional problem. Further the chord length will be small with 
respect to the smallest radius of curvature of the orbit of the blade. This restriction, as is dis- 
cussed in [6] and [7], is essential for the linear theory, we will describe here. As contrasted 

Figure 1.2. Self-intersecting orbits. 

U 

with [-6] we take into account the real chord length. This will be done in a manner, consistent 
with the linear theory. 

Because the bound vorticity of the blade is varying, free vorticity and hence kinetic energy 
is left behind (Fig. 1.3). We will minimize this kinetic energy. In this way we obtain a variational 
problem for a vorticity function, which is connected with the free vorticity distribution in the 
wake, under the constraint, that the mean thrust per unit of length of the blade with respect to 
time has a prescribed value. Besides this we will apply another method, given in [7], to obtain 
the above-mentioned vorticity function, belonging to the optimal motion of the propeller. With 
this method the vorticity function can be calculated numerically from a mixed boundary-value 
problem or be measured with the aid of an electrolytic tank. 

Figure 1,3. The one-bladed propeller with the free vortex layer. 

" U  

From the vorticity function follows easily the efficiency of the optimum propeller. It will 
be shown that the propeller has a rather small quality coefficient. This coefficient is defined in 
section 10. It follows that it is most likely that fish propulsion is not nearly so beautiful as 
generally is thought. 

Also we determine the angle of incidence of the blade as a function of time for the optimum 
propeller. Results for this angle of incidence will be compared with results, following from the 
theory of [6], by which we can obtain insight in the influence of the finite chord length. 

For a detailed discussion of several derivations and the numerical calculations which are to a 
certain extent suppressed in this article, we refer to [9]. 
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On the optimum one-bladed Cycloidal ship propeller 3 

2. Bound and Free Vorticity 

As assumed in the introduction we have a two-dimensional problem. Hence, we consider in the 
following a profile A'B' of chord length l, moving in a flat plane. In this plane we choose a Car- 
tesian coordinate system (x, y), which is at rest with respect t O the fluid (Fig. 2.1). 

YJ 

M -u I 
Figure 2.1. The profile A'B' in the (x,y)-plane. 

As a reference point at the profile we take the perpendicular projection T of the turning 
point T' on the (x, y)-plane (Figs. 1.3 and 2.1). The distance from Tto a point Q' at the profile 
A'B' is denoted by s*. This distance is measured positive in the direction of the leading edge of 
the profile. In the following T will be chosen outside of the profile (Fig. 2.2), which is not 
essential. The point T rotates with a constant angular velocity co around the point M at the 
x-axis, while M moves with a constant velocity U in the positive x-direction. 

Y~ 

0 

-R' 

2 ~pR ~: 

Figure 2.2 The cycloidal orbit of T with the segment AB. 

The orbit of Tthen becomes a cycloid (Fig. 2.2): 

x = R(#~O+sin ~O), y = R cos ~k; # = U/oR, (2.1) 

0 = o r ,  (2.2) 

where R is the radius MT of the circle, ~k the angular coordinate of Tand t the time. We assume 
in the following # > 1. Then the cycloid does not intersect itself. Such a cycloid is called a tro- 
choid. In that case the motion of the blade resembles, to a certain extent, the motion of the tail 
of a fish. 

For  the theoretical investigation we make use of a linearization process. We replace the 
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profileA'B' by a segment AB of the cycloid, on which we have a time dependent bound vorticity 
(Fig. 2.2). This segment has a fixed length I and moves along the cycloid with a velocity, of which 
the magnitude in every point of it equals the magnitude of the velocity of T. The segment has 
to deform itself during the motion because of the varying curvature of the cycloid. 

We will understand by a point at the cycloid a point, fixed with respect to the cycloid. By a 
point of AB we understand a point, fixed with respect to the segment AB. Hence such a point 
will move along the cycloid. Now a point Q of AB possesses two coordinates, viz. r and s 
(Fig. 2.3). The coordinate q~ is the angular coordinate of the point at the cycloid, which just at 
that moment coincides with Q, and s is the distance from T to Q along the cycloid. This dis- 
tance is positive, if Q lies in the translation direction of the segment AB. The distances from T 
to the trailing edge and to the leading edge of the segment AB are denoted by respectively 
a and a + I. If a is negative, T is at AB. 

The points of the actual profile A'B' are mapped on the points of AB in such a way, that 
s = s*. We suppose, the chord length 1 to be small with respect to the smallest radius of curva- 
ture of the cycloid. 

S ~ 

Figure 2.3. The position of the segment AB. 

The magnitude of the velocity of a point of AB, which, as has been said, equals the magnitude 
of the velocity of T, is denoted by V (0). According to (2.1) there holds, s' being the distance from 
a fixed point at the cycloid to T, measured along the cycloid (Fig. 2.2) : 

d--~ = \d0 , ]  + ~ , ]  = R ( 1 + # 2 + 2 #  cos 0) ~ = Rf (0  ) . (2.3) 

From (2.2) and (2.3) we find for the velocity V(0)' 

ds' ds' 
V(O) - at - dO oo = a)Rf(O).  (2.4) 

The bound vorticity per unit of length in chordwise direction, at a point of AB with coordi- 
nates rp and s, is represented by F (~o, s). This vorticity is given a positive value, if the corres- 
ponding flow is counterclockwise. We write for the derivative of F((0, s) with respect to q~ : 

or(9 ,  s) _ t ( 9 ,  s). 

Consider a point ~0 at the cycloid, where an element of length ds of AB, with the bound vorti- 
city F ((p, s) ds, passes. If s remains constant and q~ Varies with A (p, this bound vorticity will vary 
with P(q~, s)dsA tp. Denoting by s" the distance, from a fixed point at the cycloid to the point (p, 
measured along the cycloid (Fig. 2.2), there holds according to (2.3): 

As" 
Aq) - R f  (q~) " 

Hence it is obvious, that in the point q~ free vorticity is left behind, of which the strength per 
unit of length amounts to 

_ 1"(~o, s )ds  (2.5) 
Rf(q)) 
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On the optimum one-bladed cycloidal ship propeller 5 

If we want to have the total free vorticity ~ (rp, s) in the point (cO, s) of AB, we have to integrate 
over all free vorticity, which is shed at the point q~ at the cycloid by the first part of AB. Using 
(2.5) we find: 

?((p, s ) = -  f l  +z/~((p' z) 1 f "+z 
Rf(q)) dz - Rf(q)) js r(q~, "c)dx. (2.6) 

When the whole segment AB has passed the point ~o at the cycloid, the free vorticity remains 
constant at that point. This vorticity has the value 

def. Fa + l ((p) = ? (q~, a) = 1 
Rf(q)) ~oa [~(r z)d~. (2.7) 

For  the further calculations it is desirable to introduce here a vorticity function O (~o), defined 
as follows : 

def. ( ' a + l  

g(cP) = t0 r (~p, s) ds. (2.8) 

This function g(cP) represents the integral over all bound vorticity, which passes the point cp 
at the cycloid. According to (2.7) and (2.8) we have the following relation between this vorti- 
city function g(cp) and the free vorticity 7(cp): 

0( 0) 
Y(cP) - Rf  (cp) ' (2.9) 

where 

0 (cp) = dg (cp) 
dcp 

3. T h e  Thrust  

In order to calculate the thrust we need the unit normal in the point r at the cycloid. The 
tangent of the angle, between this vector n (Fig. 22) and the positive x-direction, equals 
-dx/dy .  Therefore we find according to (Z1): 

(sin (p, p + cos q~) 
n = f (rp)  (3.1) 

As assumed in the foregoing, the velocity of the axis of the propeller has a constant value U 
in the x-direction. Hence, if Kx(t) denotes the x-component of the force, acting on the bound 
vorticity of AB, at the moment  t, there holds for the useful work E, per period, delivered by this 
force, according to (2.2): 

f 
2~/o 

E. = U Kx(t)dt. 
Jo 

Therefore, in order to minimize the kinetic energy, left behind in the wake, we will prescribe 
the mean value K~ = WEu/27z U of the thrust K~(t). This prescribed value K~ yields a constraint 
on g (r For  finding this constraint we in_troduce a new function for the bound vorticity ofAB : 

def. 

G (~b, s) = F (q~, s), (3.2) 

where 0 is the angular coordinate of T. Using (2.3) it is easy to find the following relation 
between ~0 and 0:  

s = R f(x)  dx. (3.3) 

If s is constant, it follows from (3.3): 
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dO _ f(q~) (s is constant). (3.4) 
do f ( 0 )  

By virtue of the law of Kut ta-Joukowski  the lift force 

pV(~) G(~, s)ds 

acts on an elementary bound vortex G(~, s)ds, which moves with the velocity V(~), when p 
denotes the density of the fluid. 

This force has the direction of the normal n at the point q~ of the cycloid. According to (3.1) 
we find for the component in the x-direction: 

sin q~ 
pV(~b) G(O, s)ds f (q)) . 

Substitution of (2.4) and integration yields : 

Kx - 2zr G(0, s)sin q~ f - ~  

where q~ = ~p(O, s) according to (3.3), Making use of (3.2) and (3.4) we can rewrite (3.5): 

/ - F(q~, s) sin ~o do ds, 
Kx 2re t Jo* 

where by virtue of (3.3) ~o* depends on s in the following way: 

I v" s = R f (z )  dz .  
o 

Because of the periodicity of the integrand is 

( q~* + 2= f 2g �9 F (~o, s) sin ~o dip = F (~, s) sin ~o d~o. 
: J~o, 0 

Therefdre, using (2.8), we find: 

pooR f 2~ g(q~) sin pdq~. (3.6) 
K x -  2n o 

The mean value Ky of the y-component of the force is obtained analogously : 

pooR t 2~ 
K, - 2re o g(q~)(p+cos q~)dt#. (3.7) 

In connection with an  additional condition, which can be imposed on g(q~), it turns out in 
section 6, that Ky becomes zero automatically. 

We remark that we neglect the suction force at the leading edge, because the angles between 
the normals n at the cycloid and the x-direction are finite, nearly everywhere. Hence in a linear 
theory this second order force can be neglected. 

4. The Velocity Potential 

For the evaluation of the kinetic energy we need the velocity potential difference across the 
cycloid in a point q~o at the cycloid, when the segment AB has already passed. We denote the 
potential with q~. By the -t- side O f the cycloid we will understand that side, which can be 
reached from the region y <> R cos ~o (Figs. 4.1 and 2.2). 

In order to determine the potential difference we consider the segment AB, when the trailing 
edge A is at ~o o. It is found easily that 

IA def. fa+l {i~_ (S)--i~+ (S)}" ds = atot(~/o, s)ds, (4.1) �9 + ( Oo) = . 
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On the optimum one-bladed cycloidal ship propeller 7 

where v + (s) is the velocity vector of the fluid at the + side of the cycloid and v_ (s) the velocity 
vector of the fluid at the - side of the cycloid, while ds denotes an infinitesimal distance vector, 
which is tangent to the cycloid. Further ~0 is the angular coordinate of T at that moment, so 
that ~o = ~o (~Oo, a) according to (3.3). 

Figure 4.1. Determination of the potential difference across the cycloid. 

We can simplify the last integral in (4.1) by remarking, that g (q~o), although defined by (2.8), 
satisfies the relation 

g(q)o) = {r(~o, s)+?(q~, s)}ds, (4.2) 

where q~=q~(s) follows from (3.3) when we take there ~9=~o. 
This can be proved by using the following simple property of the vorticity. After having 

passed the point q~0 at the cycloid, an elementary bound vortex of AB gives rise to the creation 
of free vorticity. The sum of this created free vorticity and the variation of the bound vorticity 
remains every moment zero. This statement is in essence formula (4.2). An analytical proof of 
(4.2) is given in [9]. 

From (4.1) and (4.2), we see that 

~+ (q~o)- ~ -  (q~o) = g(q~o) - (4.3) 

If the segment AB has passed the point qgo, the potential difference in that point remains 
constant. For  at every moment the variation of the bound vorticity is compensated by the 
creation of free vorticity. Analytically this is proved in [9]. 

Next we want to know the potential difference over a period far behind the segment AB. We 
assume, that the segment AB is at x = + oe. According to [6], formula (3.5), there holds: 

�9 (x + 2re#R, y ) -  ~(x, y) = 0 ,  lyl > R .  

From this we find immediately the potential difference over a period for ]Yl < R. 

q~ R ~ 

Figure 4.2. Determination of the potential difference over a period. 

Considering the potential along P* Q* R* S* (Fig. 4.2), it is clear, that by reasons of periodicity 
the potential differences over P* Q* and S* R* are equal. Hence there holds for each y, with 
exception of the points, lying at the cycloid, where the potential is not defined : 

Journal of Engineering Math., Vol. 3 (1969) 1-20 



8 J.A.  Sparenber9, R. de Graaf 

~(x -+-2n/~R, y ) -  ~(x, y) = 0 .  (4.4) 

We remark, that formula (3:7) of [6] for the potential difference, in case of lYl < R, is wrong 
and has to be replaced by  (4.4). The mistake in [6] is caused by the fact, that in calculating the 
potential difference "implicitly" the vortex layer has been traversed. 

5. The Kinetic Energy 

When the thrust is prescribed, the kinetic energy, left behind per period, has to be as small as 
possible for an optimum propeller. Assuming the segment AB at x = + ~ ,  we calculate the 

1 + m + "t. 

\O y" ]_ 

w 

H_ 

Figure 5.1. Determination of the kinetic energy per period. 

2~kR 

kinetic energy E of the fluid over one period far behind the segment, viz. in a vertical strip H 
(Fig. 5.1) with 

0 N x _< 2rc/~R, 

- o o < y < + o o .  

This js done in the same way as in [6]. We divide H into two subregions, viz. H+ and H_, 
respectively above and beneath the cycloid. Both in H+ and in H_ we have a velocity potential 
�9 (x, y). This potential has a jump at the cycloid, as follows from section 4. We have the follow- 
ing line integral for the energy E: 

{ E=�89 ++n_ \-~x/ + \OyJ I ,++,_ ~-ffmm dl+, (5.1) 

where l+ and l_ represent the boundaries of respectively H§ and H_ and d4)/Om is the derivative 
of �9 in the direction of the inward unit normal m of l+ or l_. 

According to [6], formula (3.3), there holds for the potential ~ (x, y) in an arbitrary point of 
the fluid, far behind the segment AB: 

o •(0)log sin f(O)dO+co, (5.2) 

where Re means "the real part of" and Co denotes a constant. Further z = x + iy is a point in 
the complex (x, y)-plane and ~ a variable point at the cycloid in the complex plane : 

= ~ + i t / =  R(/x0+ sin O+i cos 0). (5.3) 

By a limit consideration we find, that ~(x,  y) at y = + oo becomes constant. Hence the parts 
of l• at y = +_ oo yield no contribution to the line integral E. Further it is easy to show, that the 
contributions from the vertical parts of l• to the line integral cancel each other. 
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On the optimum one-bladed cycloidal ship propeller 9 

Using (2.3) we now find for (5.1): 

E = pR f 2~ 0@ 
2 0 {~+ (~0)-- ~_ (q~)} 7n  (~o)f(qg)dq~ , (5.4) 

where ~@/Sn (q~) is the derivative with respect to the normal n of the cycloid (Fig. 5.1 and formula 
(3.1)) in a point q~ at the cycloid. The potential values @+ (q~) and @_ (q~) are defined in section 4. 
Their difference satisfies the relation (4.3), replacing q~o by q~. In order to give an expression for 
O~/On(qg) we make use of (5.2). It follows, that for a point (x, y) holds : 

f sinh 
/ \ 

Sin ( x - r  

# x  ' @ -  4n# io 7(0)~ ~ / / R J  ~f~R~lf(O)dO " (5.5) 
[ coshC--~R ) - 

With the aid of (3.1) we obtain for a@/an(~o) the following Cauchy-principle value integral: 

q~ x - ~  
0@ (~o) = 41n# i 7(0,{ sin sinh(Y--~-2)-(#+c~ 

where the interval of integration l~ is defined as follows 

(5.6) 

def. 
if 0__< qo __< d then l~o = 

def. 
i f d<q~<2n -d  then l~o = 

def. 
if 2n - d < ~o__< 2n then l~ = 

{OI-d<O<-2n-d},  

{ O [ O < O < 2 r c } ,  

{OId~O~2n+d} . 
By d is meant a small positive value. This shift of the interval of integration in the neighbour- 
hood of q~ = 0 and ~0 = 2n is introduced in order to obtain a principal value integral for q~ = 0 

2R 

2~-d I 

0 d 

- d  

I 
2n:-d ~Tr. $ 

Figure 5.2. Interval of integration as a function of % 

and q~ = 2n. Because of the periodicity of the integrand this is Mlowed. The domain of the 
integrand is drawn in Fig. 5.2. 

We express 7(0) in 0(0) according to (2.9). Substituting (5.6) into (5.4) thereafter and making 
use of (4.3). we find: 
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where 

with 

and 
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f ~'~ { ! t~ g(q~) O (O) L(q~, O) dO I dq~ , (5.7) 

/ s in  q~ sinh ( ~ )  - (# + c~ q~) sin ( % R ~ ) /  

x + iy = R (#q~ + sin ~o + i cos ~o) 

+ it/= R (#0 + sin 0 + i cos 0). 

6. The Variational Problem 

Before discussing the variational problem, we introduce dimensionless quantities. We agree, 
that barred symbols are dimensionless: 

x=,YR, y=yR, ~=~R, t/=flR, s=-gR; q~=0, 0=0,  
Kx= I(xp~o2 R a , 
E = E p f o  2 R 4 , 

F(q~, s) =/~(~, ~)oR,  (6.1) 

g (~o) = ~(0)oR2,  
L (~o, 0) = L (O, 0)p. 

From this moment we use only dimensionless quantities and we omit the bars above the sym- 
bols in the following. 

Hence, instead of (3.6) and (5.7) there holds for the thrust and the kinetic energy : 

K~ = ~ (~0) sin ~0 dq~, (6.2) 

E= I~ { i, g(cp)O(O)L(q~, O)dO} dq~ , (6.3) 

where /sn sin  Y   t 64 
with 

and 
x+iy = #~o +sin q~+i cos ~o 

+ it~ = #0 + sin 0 + i cos 0. 

It is our aim to choose g (q0 in such a way, that E in (6.3) is as small as possible with the 
subsidiary condition, that Kx in (6.2) has a prescribed value. Because the following symmetry 
property for L(qg, O) is valid: 

L(q~, 0) = - L(2n - ~0, 2 n -  0), (6.5) 

there holds in analogy with [6], section 4, that.9 (q~) has to be an odd function 9o (~o) of ~o, apart 
from an arbitrary constant c: 

g (q~) = go (qg)+ c.  (6.6) 
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In the following we assume the value zero for c. In the case of a wing of finite span, which can 
be represented by a lifting line, this value for c follows from. the considerations in [7], section 5. 
There it is proved, that the bound vorticities of a wing, represented by a lifting line, in two con- 
secutive positions on a straight line, parallel to the direction of motion, are opposite to each 
other. It must be stressed, however, that within the scope of our two-dimensional theory this 
choice for c is arbitrary. Because 

c = 0 -  2~ o g~176 + do (6.7) 

we see at once, that the mean force Ky in (3.7) becomes zero automatically. 
As is expressed by (6.6) and (6.7), g (r is an odd function. We represent g (q~) by a Fourier 

sine series. We can then solve the variational problem with the use of Ritz's method. Suppose, 
g(N)(~o) is an approximate solution: 

N 

g(N)(g ~ = Z a}N)sin jq ~ "~ g(gO) . (6.8) 
j = l  

The coefficients in these series generally depend on N, because they are not determined by 
orthogonality relations. The first coefficient, however, follows directly from condition (6.2): 

a(~N) = 2K~. (6.9) 

By minimizing the energy E, we find the remaining coefficients. Substitution of (6.8) into (6.3) 
gives 

def. N 

E ~ E (m = 
p,q = 1 

(m (m cos qOL(q~, O)dO d~o= qap a. j o ~L. sinpq~ 

def. N 
~ ( N )  ~(N) r P , q  

A., t t ~  p Uq L,  . 
p ,q= 1 

For a minimum of E (m it is necessary, that 

0E(m 
OaSU~- Z = 0 (j = 2 . . . .  , N) .  

(6.10) 

Hence, we obtain the following system of linear equations for the coefficients a~ N) ( /= 2,. .... N)" 

N 

Z a~N)(P ~'''+nIe'") = -a~N)(l>l+nlS"), (n= 2 ,  . . . ,  N). (6.11) 
p = 2  

-(m depend on Kx linearly. Thus the It follows from (6.9) and (6.11), that all coefficients , j  
optimal vorticity function g(~o) is proportional to Kx. This fact will be used later on. 

It can be proved easily [9] that E 'p and/Y'" satisfy the relation 

pE 'p = niP".  (6.12) 

7. Another Description of the Wake of the Optimum Propeller 

In section 6 we have set up a variational problem for the vorticity function g(go). However, 
there is another way of obtaining knowledge about  g((p). In [1] Betz has developed a theory 
about the behaviour of the free vorticity behind an optimal screw propeller. It is shown in [7], 
that this theory can be adapted to a class of nonstationary propellers, to which belongs our 
cycloidal propeller. 

We start with the prescribed mean thrust Kx. Using dimensionless quantities, there holds 
according to (3.5): 
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12 J. A. Sparenberg, R. de Graaf 

Kx = ~ o G(O, s) sin q ~ f ~  . 

When G(~k, s) is the optimal bound vorticity distribution, we will consider (see [7]) such 
variations of G (~, s), that 

AKx= ~nl f i~{ f~+~AG(O,s) sin q~ f~f(O) ds~ . (7.1) 

Introducing the vorticity function g (q~), we may also write, in accordance with (3.6) : 

1 f z~ AK~ = ~ 3o Ag(q~) sin q~dq~ = 0.  (7.2) 

Using (2.4) we find for the linear part of the variation AE of the kinetic energy E far behind 
the segmen~ AB from formula (4.3) of [7] : 

f  {fi+ s} AE = - AG(O, s)f(O)w,(~o)d d O, (7.3) 
o 

where w,(q~) denotes the normal velocity at thepoint  ~0 at the cycloid, supposing the segment 
AB is at x = + oo. The vorticity function G (~, s) has a positive value, if the corresponding flow 
is counterclockwise and w,(q~) is positive in the direction of the normal n (Fig. 2.2). We have 
reduced (7.1) to (7.2), In an analogous way we may reduce (7.3) to 

AE = - Ag(q~) w,(q~)f(q~) dp . (7.4) 
o 

This expression for AE, based on (4.3) of [7], is obtained by purely mechanical reasoning. It is 
also possible to check (7.4) in an analytical way [9]. 

When g (~o) is the optimal vorticity function, the functional A E in (7.4) has to be zero for all 
variations Ag((p), which satisfy (7.2). Besides the functionals AE and AK~, defined on the linear 
space of continuous functions Ag (q~), are linear.Hence, according to [3], 

A E - u A K x =  0 

for an arbitrary variation A 9 (q~), with u some unknown constant. This yields: 

sin ~0 (7.5) 
w,(q~), = -U f (q~) . 

In order to connect this result with the more general results of [7 3 , we consider the, in the 
x-direction two-sided infinitely long, cycloidal surface passed through by the blade after an 
infinitely long time. When we Place this surface in a homogeneous flow with a velocity u 
parallel to the x-axis, we find that the normal component of the velocity equals (7.5). 

This means that the vortieity needed to make this surface a stream surface equals the vorti- 
city ?(q~) shed by the optimal cycloidal propeller. 

From (6.6) it follows, that g(~o) has to be an odd function, apart from a constant. Also we can 
prove this by starting from the above-mentioned condition. In [7] it is shown by symmetry 
considerations, that V(~0) is an even function of ~0. Then application of (2.9) learns, that 0(q~) is 
an even function. Consequently g (~o) is an odd function, when the value zero is chosen for the 
additive constant. 

Now it is possible to find g(~p) from a mixed boundary-value problem. We consider the 
"frozen" cycloid in a homogeneous flow with velocity u = 1 in the positive x-direction. Suppose 
this "frozen" cycloid can be represented by the bound vorticity distribution V1(~0). Then 
h(q~) is the free vorticity behind the optimum propeller for the case u =  1. Suppose, next, 
that gi(~o) denotes the vorticity function g(@), which belongs to the free vorticity y~(q~) by (2.9). 
Then there must hold, according to (4.3), for the jump in the velocity potential ~l  across the 
"frozen" cycloid : 
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�9 i + = gl (7.6) 

In connection with the periodicity and symmetry we confine ourselves to half a period of the 
cycloid. We see, using (2.1) and (6.1), that we have to solve the following boundary-value pro- 
blems for two unbounded regions: 

with 

~2~ 1 + (x, y) 02~1 + (x, y) 
Ox 2 + ay 2 - O, (7.7) 

x = 0 ,  y ~ l :  
x=n#, y ~  -1" 

x=#q~+s in  q~, y = c o s  q~, 0N~0<n:  - -  

el_+ (x, y )=O,  
~ +  (x, y ) = n # ,  

t ~ 
_+ ~0j= 0 .  

On 

Having solved these problems, we can find the limit values #1 + (q~) and ~1 - (~0) in apoin t  cp at 
the cycloid. Then we obtain gl (q~) from (7.6). By reasons of linearity it follows from (7.6) and 
(7.7), that 

g( 0) = (7.8) 

while we deduce from (6.2) for u, that 

u = 2 n K x  o 01(0) s in0d  (7.9) 

Another possibility of getting ~ + (q~) and 4~ 1_ (~o) is by solving the potential problem by 
means of an electrolytic tank. A description of such a tank is given in [-4]. We can simulate the 
flow along the rigid cycloid, if we place flat conductors along the lines x = 0 and x = n#, with a 

Y 

el+=O 
$1* =K 

lz~ • 

~ J 

0 

~i-=0 r g 

(a) (b) 
Figure 7.1. Electrolytic tank configurations. 

potential difference n#, and an insulator along the cycloid (Fig. 7.1). Because of the unbounded- 
hess of the regions we have to place at a "sufficiently large" distance from the cycloid an insula- 
tor parallel to the x-axis. Measuring the potential values ~l+(q~) (Fig. 7.1a) and ~1_(~o) 
(Fig. 7.1b) along the cycloidal insulators at corresponding points, we can obtain the function 
gl (q~). We remark, however, that it is not necessary to measure both ~1 + (q~)-values and ~1 - (q~)- 
values. For, it can be proved e/tsily, that the following relation holds : 

�89 ~1 + (~o)+ ~ ,_  (~o)} = x  (~o). 

Results of such a measurement are given in section 10 where they are compared with numerical 
calculations. 

Journal of Engineering Math., VoL 3 (1969) 1-20 



14 J. A. Sparenberg, R. de Graaf 

8 The Normal Velocity at the Segment AB 

In order to calculate the angle of incidence of the profile, we need the normal velocity in each 
point of the segment AB, induced by the bound and free vorticity. 

In the complex plane the point z = x  + iy will correspond to the point ((p, s) of AB (Fig. 8.1). 
~b denotes, as in the foregoing, the angular coordinate of the reference point T. The induced 

Figure 8.1. The segment AB in the complex (x + iy)-plane. 

velocity 1: with components  vx and vy in the point z as a result of a concentrated ~ortex F at 
~=~+inis 

F 
v x -  ivy - 2rci (z - ~)' 

where F is assumed again to be positive, if the corresponding flow is counterclockwise. When 
the point ( lies at the cycloid, we find ~ =~(0) from (5.3). 

We denote the angular variables of the trailing edge and leading edge of segment AB with 
respectively (Pt and ~0t. Using (3.3) and (2.3) and integrating, we find for the velocity vl (0, (p), 
with components  vl~ and vty, induced by the free vorticity behind AB, at the point ((p, s) ofAB : 

. 1 f~"| ?(O)f(O) dO. (8.1) 
v l ~ - w l Y =  ~ _ p ( ( p - 0 ) + s i n  (p - s in  O+i (cos (p-cos-0) 

Hence, using (2.9) and (3.1), the component  vl,(0, (P) of the velocity v~ (0, (P), normal  to the cy- 
cloid, becomes 

1 f ~~ vl"(~k' (P)= 2zcf(tp) -~o O(O)M(q), O)dO, (8.2) 

where 
- # { (# + cos ~o)(0- ~o) + (sin 0 -  sin (p)} + sin (0 - q~) 

M(q~, O) = . (8.3) 
#2 ( 0 -  0) 2 + 2 # ( 0 -  q~)(sin 0 -  sin ~o) + 2 - 2 cos ( 0 -  ~o) 

In the same way we obtain the normal component  v2,(t), (p) of v2 (~k; (p), the velocity caused 
by the free vorticity along AB: 

1 !::,,0 v2,(~b, ~o) - 27zf(q~) a)f(O)M(o., O)dO. (8.4) 

By a---o-(~, 0) we mean the distance from T to a variable point at the cycloid, measured along 
the cycloid (Fig. 8.1). This distance is positive in the translation direction of segment AB. 
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Using (3.3) we find: 

o ' = f ~ f ( z ) d  z .  (8.5) 

For  the normal component  v3. (r q~) of v3 (r cp), the velocity, induced by the bound vorticity 
of AB, we fred the following Cauchy-principal value in tegra l  

1 ! ~~ 
v3,(0, cp) - 2~f(~o) G(r a)f(O)M(q~, O)dO. (8.6) 

~Pt 

9. The Angle of Incidence of the Rigid and Flat Prof'de 

We now consider the optimal mot ion  of the profile. The variations of the angle of incidence as a 
function of time have to be chosen so, that the desired free vorticity ~(~0) will be shed off. This 
free vorticity follows directly by (2.9) from the optimal function 9(q~), the solution of the varia- 
tional problem of section 6. Nothing yet is known about the distribution of the bound vorticity 

y, 

Wn(r S) 

*(r 

Figure 9.1. The angle of incidence of the rigid and flat profile. 

G (r s) or F ((p, s) along the segment AB. Therefore we suppose, that we have the freedom to 
choose the shape of the profile. We take a rigid and flat profile, oscillating around the turning 
point r (Fig. 9.1). 

We assume [2] the following expression for F (~o, s): 
M 

F((o, s)= e_z(tp)(a+ l-s)-~ +e_l(~o)(s-a)+ + 2 em(tP)(s-a) m. (9.1) 
m = 0  

The em(q~) will be bounded periodic functions with period 2re (m = -  2, - 1 ,  0, 1 . . . .  M). The 
Kutta-condit ion reads 

F (qh a) = l- ~ e_ z (q~) + eo (~o) = 0 .  (9.2) 

After substituting (9.1) into (2.8) and integrating, we fmd the following expression for 9 (~o): 
M l m + l  

g(q~) = 21~e_2(~o)+21~e_l(tp) + ~ ~ e,~(q~). (9.3) 
l '~=0 t l ~ !  �9 

Journal of Engineering Math., Vol. 3 (1969) 1-20 



16 J. A. Sparenberg, R. de Graaf 

The normal velocities v2,(~, ~0) and va,(~, rp), given by respectively (8.4) and (8.6), can now 
be expressed into the coefficients e,,(~0) of (9.1) by using (2.6) and (3.2). 

We next investigate the normal velocity w,(~, s*) at a point of the profile A'B' (Fig. 9.1), 
caused by the angle of incidence and the oscillatory motion of the profile. By s* we mean the 
distance from T to a point at the profile (Figs. 2.1 and 9.1). The angle of incidence ct(0 ) of the 
profile will be the angle between the profile and the tangent to the cycloid in T in case of an 
optimum propeller, when the mean thrust has some value K:~. We agree, ~(0) is positive in 
counterclock direction. The contribution of the velocity vector V(~k) to the normal component 
%(0, s*) is independent of the position s* at the profile : 

w1,(0, s*)= ~(0)f(0)  �9 (9.4) 

Because our theory is linear, we suppose, l e (0)t is sufficiently small. Also the oscillatory motion 
of the profile around T yields a contribution to the normal velocity. Using (2.2) we find: 

d d01) 
w2.(0, s , ) =  = - s ,  + d O / '  (9.5) 

where 0, (0) represents the angle between the tangent to the cycloid in T and the fixed x-direc- 
tion, again positive in counterclock direction. In accordance with (2.1) there holds for 01 (0): 

sin 0 
01 (0) = - a r c t g  #+cos  ~," 

Making use of (2.3) we find: 

dO1 (tp) _ # cos 0 + 1 (9.6) 
dO {f(0)} 2 

In the foregoing we supposed la(0)] to be small. Also the angle between the tangents to the 
cycloid in A and B will be small, because we consider a profile, the length of which is small 
with respect to the smallest radius of curvature of the cycloid. Therefore we use a linearization 
procedure (section 2) and compare the normal velocity, induced by the vorticity at the cycloid, 
with the velocity w,(~k, s*), caused by the angle of incidence and the oscillatory motion. The 
following equation for the normal velocities will hold : 

2 3 
- Z w~,(tp, s*)= -w,(~, s*)= v,(t), q))= Z vi,(~, qo), if s*=s, (9.7) 

i = l  i=1 

where s=s(O, q)) according to (3.3). 
From this equation we are able to evaluate the angle ~ (0). 
In order to obtain a (0) for different values of K~ it is not necessary to perform all calculations 

anew for each K~. For, we can make use of the following relation, which is easily proved [9] : 

�9 a (0) = ao (0)+ K~ {~1 (~ ) -  ao (0)}, (9.8) 

where we mean by ~1(0) and ~o(0) the "angles of incidence", which belong to respectively 
Kx = 1 and Kx = 0. We notice, that Kx = 0 implies g (~0)-0, as is obvious from the remark at the 
end of section 6. 

We see, that the geometrical angle of incidence consists of two parts, viz. a part, which deli- 
vers a mean thrust zero and an effective part, which is proportional to the mean thrust. 

10. Results 

In this section we give results for the optimal vorticity function O (~o) and the efficiency, which 
belongs to it. This efficiency is compared with the efficiency of the two-dimensional actuator 
disc, which has the highest possible efficiency, for a given velocity of advance, working area 
and mean thrust [8]. Angles of incidence e(O) of the optimum propeller have been calculated for 
two different chord lengths l in order to investigate the influence of I upon c~(O). Moreover 
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these results for e (~) are compared with the results, following from the theory of [6], which 
treats the blade as a lifting line. 

For  the constant # in (2.1) the value 1.6 is chosen. This yields a cycloidal orbit for the segment 
AB, which is drawn in Fig. 10.1. We deduce from (2.1) for the smallest radius of curvature Ps, 
that 

p s  = 1) 2 

Hence, if # = 1.6, then the length 1 of segment AB has to be theoretically much smaller than 0.36. 
We have performed calculations for 1 = 0.1 and l = 0.15 (Fig. 10.1). 

y 

1 

0.5 

o 

-0.5 

_,~ 

- [ = O A  

-t:o.15 

0.5~[x ~ rc[x ~ "  i.Src~ x" 

Figure 10.1. The cycloidal orbit of segment AB (#= 1.6). 

The optimal vorticity function g(q~) can be calculated from (6.9) and (6.11). If we take K~= 1 
in (6.9), then the first coefficient has the value 2. For  successive values of N the coefficients 
a~ m, together with the corresponding value E (m for the kinetic energy, defned by (6.10), are 
given in table 10.1. With increasing N the a~ m remain almost constant for a fixed j, while with 

_(N) approach to zero rapidly. It is obvious from (6.10) and (6.11), that with increasing j the , j  
increasing N the value for E (r~) decreases. It turns out, that E ~4) and E ~5) are equal within the 
used accuracy. Hence E (5~ is a good approximation for the minimal kinetic energy E, and 
9 (q~) is approximated sufficiently accurate by a sine series of 4 or 5 terms. 

TABLE 10.1 

-r and the kinetic energy E (m (Kx= 1). The coefficients uj 

a(N) E(N) j j = l  j = 2  j = 3  j = 4  j = 5  

N =  1 2 3.75518 
N = 2  2 0.07744 3.74529 
N=3  2 0.07716 -0.01118 3.74499 
N = 4  2 0.07715 -0.01117 0.00118 3.74498 
N = 5  2 0.07715 -0.01117 0 .00118  -0.00007 3.74498 

In Fig. 102 g ((p) is compared with the result, Obtained by electrolytic measurements (section 
7). We remark a small difference between the both graphs. ProbablY this is due to systematic 
errors of the electrolytic tank. 

It is now easy to express the efficiency qo of our optimum cycloidal propeller into the mean 
thrust Kx. According to (6.3), Table 10.1 and the fact, that the optimal function g(q)) is propor- 
tional to Kx, as is derived in section 6, we find for the kinetic energy E, left behind in the wake 
per period, that 

E = 3.74 (K~) z, if # = 1.6. 

From section 3 follows for the useful work E, of the thrust per period : 

Eu = 2rc#Kx. 
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Therefore 

tl~ _ ( l+ 0 .3 7 3 Kx )_ 1 ,  i f # = 1 . 6 .  (10.1) 

In [8] it is proved, that the highest possible efficiency t/i of a propeller with a certain working 
area, velocity Of advance and mean value of thrust, is given by the efficiency of the actuator 
disc with the same three char~/cteristic quantities. 

It is easy to show, that in the two-dimensional theory there holds for an actuator disc, making 
use of the dimensionless quantities of (2.1) and (6,1), 

(1 th= + 

"Hence, we obtain 

t/i = (1-0.098Kx) -1, if # =  1.6. (10.2) 

We stress, that (10.1) denotes the efficiency of the optimum cycloidal propeller with one blade. 

g(~) N U M E R I C A L  R E S U L T  

. . . . .  E L E C T R O L Y T I C  M E A S U R E M E N T  

2 0  
Kx-.1 

1.6 

O.g 

I 
0 ~ ~ T~ 2 ~  5..._&~ ~ 

(5 3 2 3 6 

Figure 10.2. The vorticity function g(q~). 

From [6], section 6, it follows, that the actuator disc can be "realised" by a cycloidal propeller 
with an infinite number of blades. Hence, we expect, that with the increase of the number of 
blades the efficiency t/o of the optimum propeller will increase and approach th, given by (10.2). 
It may be remarked, that even in the case of a one-bladed vertical axis propeller, which delivers 
the same mean thrust, has the same velocity of advance and the same working area [8], the 
efficiency can be made equal to t h. However, then the blade has to follow not a cycloidal, but 
another, rather complicated, although perhaps technical possible, path. 

The quality coefficient q which we define as the ratio of the coefficients of K x in (10.2) and 
(10.1) is 

0.098 
q = 0.373 = 0.263. (10.3) 

Because the actuator disc has the highest possible efficiency, we have 0_<__q_< 1. It turns out 
that this two-dimensional, one-bladed propeller, even in optimum condition, is a propulsion 
device with a low quality coefficient. 
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Of course its efficiency can be high when Kx is small, however when K~ increases, the effi- 
ciency decreases much faster than the efficiency of the actuator disc. From this it follows that 
also a fish has, from the point of view of potential flow, a low quality propulsion. 

We now mention the results of the calculations of the angle of incidence as a function of 
time or of the position of the profile along the cycloid. 

%(r 

0.02 

0 

- 0.02 

-0.04 

-0.06 

] = 0,1 
a/t= -0.5 

p, =1,6 

I I I I % I I I ' I - - ' " - 1 - - - ' - - - - I  I T - - - - ~ - - ~ I  

' \  / 

V 
Figure 10.3. The angle of incidence for l=0.1 and Kx=0 (present theory full line, theory of [6] dashed line). 

I = 0.1 4.0 
a/l=- 0.5 

2.0 

/ 

I ] f I , I I \ \  I i I , I I i i / I  
0 o.B 1.6 2.4 ',~3.2 4.0 4.8  ~ . 6 / 6 . 4  ~' 

-2.0 " / / / /  
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-4.0 

Figure 10.4. The angle of incidence for l=0.1 and Kx= 1 (present theory full line, theory of [-6] dashed line). 
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Figure 10.5. The angle of incidence for l=0.15 and K:,=0 (present theory full line, theory of [6] dashed line). 
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0,1(~)! 

2.0 

-2.0 

-4.0 

4!o 4!8 
/ 

Figure 10.6. The angle of incidence for 1 =0.15 and K~ = 1 (present theory full line, theory of [6] dashed line). 

For the length 1 of segment AB we take first the value 0.1, while the reference point T (Fig. 
9.1) is chosen in the middle of the profile, hence a = -�89 In Figs. 10.3 and 10.4 the full line deno- 
tes respectively the angle of incidence % (0) and c~1 (#/) (9.8), calculated with the theory of this 
paper. The results obtained from the lifting line theory of [6], are represented by the dashed 
lines. It is seen that, although there are differences, certainly a good conformity exists. 

In the case that/=0.15 the results are given in the Figs. 10.5 and 10.6. We remark that with 
increasing 1 the absolute values of the angle of incidence decrease almost proportional to/-  1 
In fact the pressure distribution at a blade with a larger chord length, has to be smaller in order 
to deliver the same total thrust. 

Acknowledgements 

The numerical calculations were performed for the most part on the Stantec Zebra computer 
and the TR4 computer of the "Computing Centre" of the Groningen University. The authors 
are indebted to the staff of this centre for their assistance, particularly to Mr. D. Velvis, who 
wrote the necessary Algol programs. 

Thanks are due to the "Netherlands Ship Model Basin" at Wageningen, where a part of the 
calculations for the function 9 (q~) has been carried out on the X1 computer. 

Also the authors are indebted to Dr. J. L. Verster of the "Technical Physical Laboratory" of 
the Groningen University, under whose supervision Mr. F. P. C. Visser measured, by means of 
an electrolytic tank, the function g (q~). 

R E F E R E N C E S  

[1] Betz, A.: Schraubenpropeller mit geringsten Energieverlust; Nachrichten von der K6niglichen Gesellschaft der 
Wissenschaften zu G6ningen, Math.-phys. Klasse, Heft 2, Berlin, 1919. 

[2] Bisplinghoff, R. L,  Ashley, A. and Halfman, R. L. : Aeroelastieity; Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 2rid printing, I957. 

[3] Gelfand, I. M. and Fomin, S. V. : Calculus of Variations ; translated by R. A. Silverman, Prentice-Hall, Inc., Engle- 
wood Cliffs, New Yersey, 1963. 

[4] Karplus, W. J. : Analo9 Simulation. Solution of field problems; McGraw-Hill Book Company, 1958. 
[5] Mueller, H. F. : Recent Developments in the Design and Application of the Vertical Axis Propeller; The Society 

of Naval Architects and Marine Engineers, New York, 1955. 
[6] Sparenberg, J. A. : On the efficiency of a vertical-axis propeller; Third Symposium Naval Hydrodynamics, high 

performance ships; N.S.P., Wageningen, 1960. 
[7] Sparenberg, J. A. : On the efficiency of a class ofnonstationary ship propellers ; Journal of Ship Research, December, 

1967. 
[8] Sparenberg, J. A. : An Upper Bound for the Efficiency of Liohtly Loaded Ship Propellers; Volume 110, Transactions 

R.I.N.A., No. 1, 1968. 
[9] Sparenberg, J. A. and de Graaf, R.: "'On the optimum one-bladed cycloidal ship propeller"; Report TW-50, Math. 

Inst., University of Groningen, Holland, 1967. 

Journal of Engineering Math., Vol. 3 (1969) 1-20 


